

MARPOL ABS HI15 Ethylene Vinyl Acetate

PRODUCT DATA SHEET

Ge	ne	era	l

(

- AvailabilityProcessing Method
- Description
- Global
- Injection Molding
- High Impact ABS

Physical	Nominal Value	Test Method
Density/Specific Gravity	1.04 g/cm3	ASTM D792
Melt Mass-Flow Rate	3.7 g/10 min	ASTM D1238
Melt Volume-Flow Rate	15 cm3/10min	ISO 1133
Mechanical	Nominal Value	Test Method
Tensile Modulus	2100 MPa	ASTM D638
Tensile Stress		ASTM D638
Yield	41 MPa	
Break	31 MPa	
Tensile Elongation		ASTM D638
Yield	2%	
Break	26%	
Flexural Modulus	2200 MPa	ASTM D790
Flexural Strength	68 MPa	ASTM D790
Impact	Nominal Value	Test Method
Notched Izod Impact	347 J/m	ASTM D256
Dart Impact	31 J	ASTM D3763

These suggestions and data are based on information we believe to be reliable. They are offered in good faith, but without guarantee as conditions and methods of use are beyond our control. We recommend that the prospective user determine the suitability of our materials and suggestions before adopting them on a commercial scale.

MARPOL ABS HI15 Ethylene Vinyl Acetate

Thermal	Nominal Value	Test Method
Deflection Temperature Under Load		D648
.45 MPa, Unannealed, 3.2 mm	97 C	ASTM D256
1.8 MPa, Unannealed, 3.2 mm	82 C	ASTM D3763
Vicat Softening Temperature	98 C	ASTM D1525
CLTE		
Flow: -40 to 40 C	8.82E-5 cm/cm/C	
Transverse: -40 to 40 C	8.64E-5 cm/cm/C	
RTi	60 C	UL 746
Flammability		
Flame Rating (1.5mm)	НВ	UL 94
Injection Processing		Nominal Value
Drying Temperature		80 to 95 C
Drying Time		2 to 4 hours
Suggested Max Moisture		0.10%
Suggested Shot Size		50 to 70%
Rear Temperature		190 to 210 C
Middle Temperature		205 to 225 C
Front Temperature		215 to 240 C
Nozzle Temperature		220 to 260 C

These suggestions and data are based on information we believe to be reliable. They are offered in good faith, but without guarantee as conditions and methods of use are beyond our control. We recommend that the prospective user determine the suitability of our materials and suggestions before adopting them on a commercial scale.

MARPOL ABS HI15 Ethylene Vinyl Acetate

Injection Processing	Nominal Value
Processing (melt) Temperature	220 to 260 C
Mold Temperature	50 to 70 C
Back Pressure	.3 to .7 MPa
Screw Speed	30 to 60 rpm
Vent Depth	.038 to .051 mm

These suggestions and data are based on information we believe to be reliable. They are offered in good faith, but without guarantee as conditions and methods of use are beyond our control. We recommend that the prospective user determine the suitability of our materials and suggestions before adopting them on a commercial scale.

